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Kink motion in the barrier crossing of a chain molecule
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Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

~Received 15 March 1999; revised manuscript received 4 November 1999!

We consider the activated escape of chain molecule ofN segments over a barrier, a generalization of the
classic Kramers problem. Using the Rouse model, we show that the free energy of activation has a square root
dependence on the temperatureT, leading to a non-Arrhenius form for the rate. We further show that there is
a special time dependent solution of the model, which corresponds to a kink in the chain, confined to the region
of the barrier. The polymer goes from one side to the other by the motion of the kink in the reverse direction.
If there is no free energy difference between the two sides of the barrier, then the kink moves by diffusion and
the time of crossingtcross;N2/T3/2. If there is a free energy difference, then the kink moves with a nonzero
velocity from the lower free energy side to the other, leading totcross;N/AT.

PACS number~s!: 83.10.Nn
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The problem of thermally activated escape of a parti
over a barrier~the Kramers problem! is very well studied
~see the review@1#!. We investigate the generalization of th
to the crossing of a free energy barrier by a long chain m
ecule. An example can be a polymer moving across the
terface of two immiscible liquids. Recent simulations on th
problem@2# found that a peptide, when placed in the aqueo
phase near a water-hexane interface, rapidly translocate
ward the hexane phase. A more interesting example is p
mer molecule forced to move through a pore@3#. We ask:
given the shape of the barrier,~i! what is the free energy o
activation for polymer entry into the barrier, and~ii ! once an
end of the polymer has crossed the barrier, what is the t
tcross taken by the entire polymer to move across it? Muth
kumar and Baumgartner@4# studied the effect of entropic
barriers on dynamics of polymers. They found the total p
sage time to depend exponentially on the number of s
ments in the polymerN. Park and Sung@5# have considered
the translocation of a long chain molecule through a pore
a membrane. For a flexible molecule they argue thattcross
scales asN3, but this can go over to;N2 if there is a free
energy difference between the two sides. We consider
case where the width of the barrier,w is larger than the Kuhn
length l of the polymer, but small in comparison with th
length of the polymer. That is,l !w!Nl . In comparison,
the entropic barrier of Ref.@5# is wide and has a width;Nl.
The opposite limitw..Nl has been considered recent
@6#.

We consider a one dimensional model for both the bar
and the chain molecule and use continuum version of
Rouse model@7# to describe the dynamics:

z] tR~n,t !5m]nnR~n,t !2V8@R~n,t !#1 f ~n,t !. ~1!

R(n,t) denotes the position of thenth unit of the polymer at
the time t. The boundary conditions are$]nR(n,t)%n50
5$]nR(n,t)%n5N50. V(R) is the free energy of a segme
of the polymer located at the positionR. The barrier is as-
sumed to extend in space from2a0 to a1, with a0,a1. We
takeV(R) to be a smooth continuous function, withV8(R)
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52kR(R1a0)(R2a1) for 2a0,R,a1 andV8(R)50 outside
these limits. Taking the potential to be zero forR,2a0, we
get

V~R!5
k

6
~R1a0!2~3R222Ra024Ra11a0

212a0a1!

~2!

for 2a0,R,a1 and V(R)5 1
6 k(a02a1)(a01a1)3 for R

.a1. The form of the potential is shown in Fig. 1@we refer
to this potential as the pure repulsive barrier~PRB!#. The
maximum of the barrier occurs atRmax50. The barrier height
in the forward direction isVf5

1
6 ka0

3(a012a1) while in the
reverse direction it isVb5 1

6 ka1
3(2a01a1). On crossing the

barrier, a unit of the polymer lowers its free energy byDV
5 1

6 k(a02a1)(a01a1)3. We also discuss the case where t
functional form of Eq.~2! is applicable over the entire rang
of R so that the dynamics occurs in a biased double w
~BDW!. Our conclusions are general and independent of
form of the actual functional forms of the potentials that w
use.

f (n,t) in Eq. ~1! is the random force acting on thenth

segment. It has the correlation function^ f (n,t) f (n1 ,t1)&
52zkBTd(n2n1)d(t2t1). When the system is at equilib
rium, the probability distribution functional is exp„

2(1/kBT)*dn$ 1
2 m(]nR)21V@R(n)#%…. The activation free

energy for the crossing can be found by extremising t
functional, subject to the condition that one end of the po
mer has crossedRmax. The extremum configuration obey
the equations m]nnR5V8(R) and $]nR(n,t)%n50
5$]nR(n,t)%n5N50. This is just Newton’s equations for
~fictitious particle! of massm, moving under a potential
2V(R). If the polymer is very long, we can find the extre
mum configuration by takingR(2`)52a0 and the other
end of the polymer to be at a point withR.Rmax. The total
energy of the particleEc5 1

2 m(]nR)22V@R(n)# is con-
served. For the extremum configuration one findsEc50.
This means that the fictitious particle starts atR(2`)
52a0 and ends up atRf , whereRf(.Rmax) is such that
V(Rf)50. The free energy of activation isEact

5*
2a0

Rf A2mV(R)dR. For the PRB potential, there are larg
3245 ©2000 The American Physical Society
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3246 PRE 61BRIEF REPORTS
fluctuations of the portion of the chain in the regionR,
2a0. Neglecting the length of the portion of the chain that
over the barrier, one can estimate the effect of forcing
chain to the vicinity of the barrier as an entropic contributi
to the activation free energy equal to (kBT/2)ln@N# @5#. Thus,
for the PRB, the net rate is proportional to proportional
e2Eact /kBT/AN. If, however, the potential is not flat, but bind
ing ~as in a BDW potential!, then the chain segments cann
undergo such large amplitude fluctuations. Then, this con
bution would not be there to the activation free energy a
the Boltzmann factor would simply be proportional
e2Eact /kBT ~a detailed calculation of this can be done w
instanton methods@9#!. This scenario would be valid, if on
were forcing the polymer to cross the barrier, by applicat
of external field, or even if there is at least a weak attract
tail portion to the barrier, resulting from van der Waals i
teractions.

The parameterm in the Rouse model is proportional to th
temperature@7#. So if V(R) is temperature independen

EactaAT. This leads to a Boltzmann factor;e2constant/AT

.
For the potential of Eq.~2!, we find Rf5a0(g2Ag22g)

with g5@112(a1 /a0)# 1
3 and Eact5(Amka0

3/6)$(3g2

11)A113g23g(g221)ln@Ag(g21)/(11g2A113g)#%.
Now, to calculatetcross, we first look at the mathematica

solutions of the deterministic equation, in which we repla
random noise termf (n,t) by its average. The result is

z] tR~n,t !2m]nnR~n,t !1V8~R!50 ~3!

with $]nR(n,t)%n505$]nR(n,t)%n5N50. The simplest solu-
tions of this equation are:R(n,t)5R0 (R0 is a constant!,
with R0,2a0, or with R0.a1. These correspond to th
polymer being on either side of the barrier. Thermal no
makesR(n,t) fluctuate about the mean positionR0. These
may be analyzed using the normal coordinates for fluct
tions about this mean position@7#. In addition to these two
time independent solutions, the above equation has a
dependent solution~a kink! too, which corresponds to th
polymer crossing the barrier. We analyze the dynamics of
chain, with the kink ~distortion! in it, using the normal
modes for fluctuations about the kink configuration@8#.

FIG. 1. The barrier and its inverted form. The barrier heights
the forward and backward directions are shown. The dotted
represents the path that determines the activation energy.
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The kink solution may be found using the ansatzR(n,t)
5Rs(t) where t5n2vt @8#, when Eq. ~3! reduces to
m(d2Rs /dt2)1vz(dRs /dt)5V8(Rs). If one imaginest as
time, then this is a simple Newtonian equation for the mot
of particle of massm, moving in the upside down potentia
2V(R), andvz/m is the coefficient of friction. We can eas
ily find a solution of this equation, obeying the condition
Rs(t)52a0 for t→2` and Rs(t)5a1 for t→`. It is
Rs(t)5(2a01etv(a01a1)a1)(11etv(a01a1))21, where v
5Ak/m and the velocityv5(Amk/z)(a02a1). The solution
is a kink, occurring in the portion of the chain inside th
barrier. The point witht50 shall be referred to as the cent
of the kink. @Actually one has a one-parameter family
solutions of the formRs(t1t0), wheret0 is any arbitrary
constant.# As t5n2vt, the center of the kink moves with
the constant velocityv, which depends on the barrier heigh
Vf andVb . Note that ifa0,a1, thenVf,Vb , and this ve-
locity is negative. This implies that the kink is moving in th
negative direction, which corresponds to the chain moving
the positive direction. That is, the chain moves to the low
free energy region, with this velocity. If the barrier is sym
metrica05a1 (Vf5Vb) then the velocity of the kink is zero

The center of the kink would also execute Brownian m
tion, due to thermal fluctuations of the medium. To analy
this, following ‘‘instanton methods’’ of field theory@9#, we
write

R~n,t !5Rs@n2a~ t !#1 (
p51

`

Xp~ t !fp„n2a~ t !,t…. ~4!

Movement of the kink occurs by change of the location
its centera(t). a(t) is a random function of time which is to
be determined.fp are a set of functions defined below an
Xp(t) are expansion coefficients.fp eventually will turn out
to describe motion along thepth normal mode in presence o
the kink in the chain. Using Eq.~4! in Eq. ~1! and expanding
around the kink, retaining first order terms inXp(t), and
changing over to the new variables (n̄,t) with n̄5n2a(t),
(n̄ is segment position along the chain with respect to
center of the kink! we get

z@v2ȧ~ t !#] n̄Rs~ n̄!1z (
p51

`

Ẋp~ t !fp~ n̄,t !

1 (
p51

`

Xp~ t !L̂fp~ n̄,t !5 f „n̄1a~ t !,t…, ~5!

whereL̂5z] t2m] n̄n̄2 ża(t)] n̄1V9@Rs(n̄)#. We takefp to
obey the equation$z] t2m]nn̄2zv] n̄1V9@Rs(n̄)#%fp(n̄,t)
50, subject to the condition] n̄fp(n̄,t)50 at both ends of
the chain@i.e., atn̄52a(t) and atn̄5N2a(t)#. For a very
long chain, with the kink located well inside it, the end
cannot influence the dynamics of barrier crossing. Theref
we would make only a minor error by imposing these boun
ary conditions at n̄56N/2. Then, putting fp(n̄,t)
5cp(n̄)e2lpt/z2vzn̄/(2m), we find that cp(n̄) has to obey
Ĥcp(n̄)5lpcp(n̄) with Ĥ5$2m] n̄n̄1V9@Rs(n̄)#1(vz)2/
(4m)%. The translation mode of the kink leads to a soluti
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c0(n̄) of the above equation withl050 @9#. Its functional
form may be found by puttingevzn̄/(2m)] n̄Rs(n̄)5 v(a0

1 a1)2e(1/2)n̄v(3a01a1) (11en̄v(a01a1))22 5 Cc0 (n̄), where
is C the is the normalization factor, chose
such that ^c0uc0&51. On evaluation, we find C2

5 ^] n̄Rs (n̄) uevzn̄/mu ] n̄Rs(n̄)& 5 2
3 pv csc@2p (a12a0) / (a0

1a1)#(a12a0)a0a1. The eigenfunctionscp(n̄),p50•••`
form an orthonormal set.

Equation~5! thus becomes

(
p51

`

Ẋp~ t !cp~ n̄!e2lpt/z1@v2ȧ~ t !#Y~ t !

5
1

z
evzn̄/(2m) f „n̄1a~ t !,t… ~6!

where Y(t)5c0(n̄)C1(p51
` Xp(t)e2lpt/z]̃ n̄cp(n̄), with ]̃ n̄

5evzn̄/(2m)] n̄e2vzn̄/(2m). On taking the inner product of thi
with c0(n̄), we get

@v2ȧ~ t !#S C1 (
p51

`

Xp~ t !e2lpt/z^c0u ]̃ n̄cp~ n̄!& D 5j0~ t !

~7!

with j0(t)5(1/z)*2N/2
N/2 dn̄c0(n̄)evzn̄/(2m) f „n̄1a(t),t…. Ob-

viously, ^j0(t)&50 and

^j0~ t !j0~ t1!&

5d~ t2t1!~2kBT/z!E over the kinkdn̄evn̄z/m@c0~ n̄!#2

5d~ t2t1!kBT/~2za0a1!sec@2p~a12a0!/~a01a1!#

3~3a12a0!~3a02a1!.

On taking the inner product of Eq.~6! with c l(n̄), we get

Ẋle
2l l t/z1@v2ȧ~ t !# (

p51

`

Xp~ t !e2lpt/z^c l u ]̃ n̄ucp&5j l~ t !,

~8!

where jp(t)5(1/z)*2N/2
N/2 dn̄c l* (n̄)evzn̄/(2m) f „n̄1a(t),t….

Equation ~8! may be solved, and using the ketsuX(t)&
5(p51

` Xp(t)ucp& and uj(t)&5(p51
` jp(t)ucp&, the solution

is

uX~ t !&5uXd~ t !&1uXr~ t !& ~9!

with uXd(t)&5T̂„exp$*0
t dt1@ȧ(t1)2v#Â(t1)%…uX(0)&, uXr(t)&

5*0
t dt1T̂@exp$*t1

t dt2(ȧ(t2)2v)Â(t2)%#e
Ĥt1uj(t1)&, whereÂ(t) is

the operatorÂ(t)5eĤt/z]̃ n̄e2Ĥt/z. T̂ is the time ordering op-
erator. Equation~7! gives

ȧ~ t !5v1j0~ t !/@C1^c0u ]̃ n̄e2Ĥt/zuX~ t !&#. ~10!

Now taking the average of the above, and using Eq.~9! and
the fact thatj0(t) is independent of everything that occurre
at previous instants, we get^ȧ(t)&5v, so that on an average
the kink moves with a velocityv. For the polymer to cross
the barrier, the kink has to go in the reverse direction, b
distance equal to the length of the chain. Hencetcross

;N/v. As v is proportionalAmk, assumingV(R) to be
temperature independent we findtcross;N/AT. If one ne-
glects the kink-phonon scattering term in Eq.~10! @i.e., the

term ^c0u ]̃ n̄e2Ht/zuX(t)&#, then the diffusion coefficient of
the kink is D5(3kBT/8pz)Am/k@(3a12a0)(3a02a1)/
a0

2a1
2(a12a0)#tan@2p(a12a0)/(a01a1)#.

The above analysis of kink dynamics is valid for th
BDW, while for the PRB, one has to include the effect of t
entropy contribution to the free energy@5#. The kink repre-
sents the local distortion of the chain caused by the bar
potentialV(x). It would exist as a stable object on the cha
provided the barrier height originating from the potent
V(x) is large in comparison withkBT. Further, it is localized
within the widthw of the potential. The entropic effects lead
to an additional contribution to the barrier, of heig
;kBT(ln N), which is spread over a large length scale, of t
order of N. Hence its effect on the structure of the kink
negligible. The driving force for kink motion is the free en
ergy changeDV(,0) per segment, on crossing the barrie
In comparison, the free energy change per segment, from
entropy part is only;kBT(ln N)/N, which can be neglected
if uDVu..kBT(ln N)/N, a condition which is easily satisfie
for largeN. Thustcross;N/AT for the PRB too, ifDV,0.

Now we consider the case where the driving forceDV
50. Then, in double well case, the kink has no preferr
direction to move, and its average velocityv50. One can
find D5(3kBT/4za0

3)Am/k. In this case, the kink just ex
ecutes random walk without any bias and the time requi
for the polymer to cross the barrier istcross;N2/D
;N2/T3/2. For the PRB, if DV50, the conditionDV.
.kBT(ln N)/N is not obeyed and hence the entropic effe
have to be included in the description of dynamics. The pr
ence of the barrierV(x) assures the existence of the kin
and as the kink is localized, its diffusion coefficient has
dependence onN. The kink just diffuses under the influenc
of the entropic part of the potential. Now using the first pa
sage approach of Ref.@5#, one finds again thattcross
;N2/D;N2/T3/2. Thus, if DV50, tcross;N2/D;N2/T3/2

in general.
One may finally ask: under what conditions does one

pect the kink mechanism to be operative? We have alre
given the conditionw!Nl, so that the polymer extends from
one side to the other during most of the time that is spent
crossing. The kink would exist as a coherent entity, only
thermal fluctuations do not destroy it. This means that
barrier height originating fromV(x) be much larger than
kBT. It is also to be noted that our analysis implies that
long as these conditions are satisfied, the kink is alw
there, and its motion is the mechanism for the barrier cro
ing. This is true, even for very long chains which have
appreciable contribution to the total barrier from the entro
effect, which may even be greater than the barrier due
V(x), simply due to the fact that the entropic contribution
spread over a length of orderN, and hence does not affect th
structure of the kink.
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In Ref. @5# the motion is assumed to be equivalent to th
of the center of mass and hence the effective diffusion co
ficient taken to be;1/N. So, to cover a distanceN, it needs
a time;N3. A free energy difference between the two sid
makes the time;N2. In our analysis, the crossing occurs b
the motion of the kink. The diffusion coefficient of the kin
is N independent and hence our results are different fr
those of Ref.@5#. In the case where there is no free ener
difference, our crossing time is proportional toN2~in contrast
to N3 of Ref. @5#!, while if there is a free energy difference
e

t
f-

s

m
y

our crossing time is proportional toN ~in contrast toN2 of
Ref. @5#!. The tcross;N behavior discussed here has be
observed in the experiments by Kasianowiczet al. @3#, in
which single stranded DNA molecules were forced to mo
through a nanopore.
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