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Kink motion in the barrier crossing of a chain molecule
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We consider the activated escape of chain moleculd sEgments over a barrier, a generalization of the
classic Kramers problem. Using the Rouse model, we show that the free energy of activation has a square root
dependence on the temperatlitdeading to a non-Arrhenius form for the rate. We further show that there is
a special time dependent solution of the model, which corresponds to a kink in the chain, confined to the region
of the barrier. The polymer goes from one side to the other by the motion of the kink in the reverse direction.

If there is no free energy difference between the two sides of the barrier, then the kink moves by diffusion and
the time of crossind.,.ss~ N?/T%2. If there is a free energy difference, then the kink moves with a nonzero
velocity from the lower free energy side to the other, leading fgy s~ N/\T.

PACS numbd(s): 83.10.Nn

The problem of thermally activated escape of a particle=2kR(R+ay)(R—a,) for —ay<R<a; andV'(R)=0 outside
over a barrier(the Kramers problejnis very well studied these limits. Taking the potential to be zero < —a, we
(see the revieWl]). We investigate the generalization of this get
to the crossing of a free energy barrier by a long chain mol-
ecule. An example can be a polymer moving across the in- k
terface of two immiscible liquids. Recent simulations on this ~ V(R)=z(R+ a0)%(3R?—~2Ray—4Ra; +aj+2aga;)
problem[2] found that a peptide, when placed in the aqueous )
phase near a water-hexane interface, rapidly translocates to-
ward the hexane phase. A more interesting example is poly,, —a,<R<a, and V(R)=tk(a,—a;)(ap+ay)® for R
mer molecule forced to move through a p¢8d. We ask: >a,. The form of the potential is shown in Fig.[tve refer
given the shape of the barrigi) what is the free energy of to this potential as the pure repulsive bari®RB)]. The
activation for polymer entry into the barrier, afig) once an maximum of the barrier occurs B, =0. The barrier height
end of the polymer has crossed the barrier, what is the timfn the forward direction i&/;= %kaogzaOJrZal) while in the

teross taken by the entire polymer to move across it? Muthu reverse direction it i8/, = %kaf(2a0+al). On crossing the

kumar and Baumgartnd#] studied the effect of entropic barrier, a unit of the polymer lowers its free energy &y

barriers on dynamics of polymers. They found the total pas-_ Li(ag—ay)(ag+ay)3. We also discuss the case where the

fnaegrftstlir:?hteo %Tprﬁgg ?(;r?(nae:gasnzn%g] tr?aevglggr?sei[jgegegfunctional form of Eq.(2) is applicable over the entire range
poly : . . of R so that the dynamics occurs in a biased double well
the translocation of a long chain molecule through a pore 'QBDW). Our conclusions are general and independent of the

a membrage' For a flexible molecule gh.ey argue thaks form of the actual functional forms of the potentials that we
scales ad\”, but this can go over te-N< if there is a free use

energy difference between the two sides. We consider the f(n.t) in Eq. (1) is the random force acting on the"
case where the width of the barriers larger than the Kuhn ' d: . ) g
segment. It has the correlation functidi(n,t)f(ny,t;))

Jangth of the polymer. That Hew=<NI . In comparison, .~ 2¢KsT2(n—1)2(1—1,). When the system is at equlb-
the entropic barrier of Ref5] is wide and has a width- NI. fium, - the  probability  distribution functlon_al _'S ekp
The opposite limitw>>NI has been considered recently — (1ksT)/dn{zm(d,R)?+V[R(n)1}). The activation free
[6]. energy for the crossing can be found by extremising this
We consider a one dimensional model for both the barriefunctional, subject to the condition that one end of the poly-
and the chain molecule and use continuum version of th&her has crosse®m,.. The extremum configuration obeys
Rouse mode]7] to describe the dynamics: the equations md,,R=V'(R) and {d,R(n,t)}n-0
={d,R(n,t)},—n=0. This is just Newton’s equations for a
(fictitious particle of massm, moving under a potential
LoR(N,H)=mdpR(N,D—V'[R(N,H)]+f(n,t). (1) —V(R). If the polymer is very long, we can find the extre-
mum configuration by takindR(—)= —ay and the other
end of the polymer to be at a point wilR>R,,,5. The total
R(n,t) denotes the position of theth unit of the polymer at  energy of the particleE.=3m(d,R)*~V[R(n)] is con-
the time t. The boundary conditions argd,R(n,t)}n—o served. For the extremum configuration one firigls=0.
={3,R(n,1)},—n=0. V(R) is the free energy of a segment This means that the fictitious particle starts R{—°)

of the polymer located at the positidd The barrier is as- = —@ap and ends up aR;, whereR(>Rp,) is such that
sumed to extend in space froma, to a;, with a,<a;. We V(RRf):O- The free energy of activation isEsc
take V(R) to be a smooth continuous function, with (R) =f_faox/2mV(R)dR. For the PRB potential, there are large

1063-651X/2000/6(B)/32454)/$15.00 PRE 61 3245 ©2000 The American Physical Society



3246 BRIEF REPORTS PRE 61

The kink solution may be found using the anskia,t)
=R4(7) where r=n—vt [8], when Eg. (3) reduces to
m(d?Rs/d7?)+v{(dRs/d7)=V'(R). If one imaginesr as
: time, then this is a simple Newtonian equation for the motion
of particle of massn, moving in the upside down potential
—V(R), andv ¢/m is the coefficient of friction. We can eas-
ily find a solution of this equation, obeying the conditions
Ry(7)=—ay for 7—— and Ry(7)=a; for r—oo. It is
Ry(7)=(—ap+e™@alg, ) (1+e™(@0Ta)) "1 where o
= Jk/m and the velocity = (VmKk ¢)(ap,—a;). The solution
is a kink, occurring in the portion of the chain inside the
barrier. The point withr=0 shall be referred to as the center
of the kink. [Actually one has a one-parameter family of

R-> solutions of the formR¢(7+ 7o), where 7y is any arbitrary

FIG. 1. The barrier and its inverted form. The barrier heights inconstant, As 7=n—uvt, the center of the kink moves with
the forward and backward directions are shown. The dotted lindhe constant velocity, which depends on the barrier heights
represents the path that determines the activation energy. V; andVy. Note that ifag<a;, thenV;<V,, and this ve-

locity is negative. This implies that the kink is moving in the
fluctuations of the portion of the chain in the regig  Nedgative direction, which corresponds to the chain moving in
—a,. Neglecting the length of the portion of the chain that isthe positive dlre_ct|on. _That_ls, the <_:ha|n moves to the lower
over the barrier, one can estimate the effect of forcing thd'€€ energy region, with this velocity. If the barrier is sym-
chain to the vicinity of the barrier as an entropic contributionMetricap=2a, (Vy=Vy) then the velocity of the kink is zero.
to the activation free energy equal tos{T/2)IN[N] [5]. Thus, _ The center of the kink Wo_uld also executt_a Brownian mo-
for the PRB, the net rate is proportional to proportional totion, due to the‘:‘rmal fluctuations of”the medium. To analyze
e~Eact/keT/ /N If, however, the potential is not flat, but bind- this, following “instanton methods™ of field theor}9], we
ing (as in a BDW potentia) then the chain segments cannot write
undergo such large amplitude fluctuations. Then, this contri-
bution would not be there to the activation free energy and
the Boltzmann factor would simply be proportional to
e~ Fact/*sT (3 detailed calculation of this can be done with
instanton methodf9]). This scenario would be valid, if one  Movement of the kink occurs by change of the location of
were forcing the polymer to cross the barrier, by applicationits centera(t). a(t) is a random function of time which is to
of external field, or even if there is at least a weak attractivebe determinedé,, are a set of functions defined below and
tail portion to the barrier, resulting from van der Waals in- X (t) are expansion coefficients, eventually will turn out
teractions. to describe motion along theth normal mode in presence of

The parametemin the Rouse model is proportional to the the kink in the chain. Using Ed4) in Eq. (1) and expanding
temperature[7]. So if V(R) is temperature independent, around the kink, retaining first order terms ¥,(t), and
Eact\T. This leads to a Boltzmann factere™c°"StaM\T cpanqing over to the new variables, ) with n=n—a(t),

For the potential of Eq(2), we find Ri=ao(y=V¥°~7%)  (n is segment position along the chain with respect to the
with y=[1+2(a;/ap)]i and E..=(Vmkal/6){(3y>  center of the kinkwe get

+1)V1+3y—3y(y?—1)In[\y(y—1)/(1+ y—V1+3)1}. )

Now, to calculatd,,ss, We first look at the mathematical : — . —
solutions of the deterministic equation, in which we replace g[v_a(t)]aﬁRS(anZl Xp(t) #p(n,1)
random noise ternfi(n,t) by its average. The result is -

V(R) and -V(R)

V(R)

o0

R(n,t>=Rs[n—a<t>]+p§1 Xp(t) pp(n—a(t),t).  (4)

£OR(N,E) —md, R(N,1)+ V' (R)=0 3) +p§=:1 Xp(OLgp(nO=F(1+ab).,), (5

with {2,R(N, 1)} 0={3aR(N,1)},_n=0. The simplest solu- WhereL=d;—mdn,—fa(t)dy+ V'[Ry(n)]. We taked, to
tions of this equation areR(n,t)=R, (R, is a constant  obey the equatiof{d;—md,,= {vdy+ V"[Rg(N) 1} dp(N,1)

with Ro<<—ao, or with R,>a;. These correspond to the =0, subject to the conditiod,(n,t)=0 at both ends of
polymer being on either side of the barrier. Thermal noisgy,, chaini.e., ath—a(t) and atﬁzN—a(t)]. For a very
makesR(n,t) fluctuate about the mean positi@ty. These |ong chain, with the kink located well inside it, the ends
may be analyzed using the normal coordinates for fluctuazannot influence the dynamics of barrier crossing. Therefore

t?ons _about this mean positic[r?]. In addition to these tWo  \ve would make only a minor error by imposing these bound-
time independent solutions, the above equation has a time — —

dependent solutiorfa kink) too, which corresponds to the 2" E)n?':'?/nf gtzn— *N/2. Then, putting $p(n,t)
polymer crossing the barrier. We analyze the dynamics of the” ¥/p(n)€”"?"¢ enizm, we find that,(n) has to obey
chain, with the kink (distortion in it, using the normal Hy(n) =N\, ¢p(n) with H={—mdm+V"[Ry(n) ]+ (v)?
modes for fluctuations about the kink configurat{@&n. (4m)}. The translation mode of the kink leads to a solution
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¥o(n) of the above equation withg=0 [9]. Its functional
form may be found by puttinge’¢”®™ 7Ry (n)= w(ay
+ al)Ze(I/Z)nw(3a0+al)(1+enw(a0+a1))—2: Clﬂo(n), where
is C the is the normalization factor,
such that (ig/#o)=1. On evaluation, we findC?

= (R (n) [€74"™ g,Rs(N)) = S mw s 27 (a;—ag) / (Ao

+a;)](a;—ag)aga;. The eigenfunctions/xp(ﬁ),pzo- -0
form an orthonormal set.
Equation(5) thus becomes

21 Xo(t) rp(me M+ [v—a(t)]Y(1)
=

1 — _
=Zev4“’<2m>f(n+a(t),t) (6)

where Y (1) = ¢o(n) C+35_, X,(t) e Gy, (n), with Gy

=gvV@m ge-vi(2M On taking the inner product of this

with zpo(ﬁ), we get

©

C+ pzl Xp(t)e Mol wolﬁwp(ﬁ») = &(1)
7

with &(t) = (1/2) FNV2 ,dnye(n) e’ @™t (n+a(t),t). Ob-
viously, (£4(t))=0 and

[v—a(t)]

(€o(t)&o(ty))

= 5(t_t1)(2kBT/§)f over the kindeeUF{/m[ lﬂo(ﬁ)]z
=6(t—t)kgT/(2Zapga;)se¢2m(a;—ag)/(ag+ay)]
X (3a;—ag)(3ag—ay).

On taking the inner product of E@6) with ¢4(n), we get

Xie Mt [v—a(t)] p; Xp(t)e ([l gy = &1(1),
(8)
where  £,(t)=(1/0) [N ,dng (n)e M (nta(t) t).

Equation (8) may be solved, and using the kel5(t))

_=E;°:lxp(t)|z/fp) and [&(t))=2]_,&,(t)[ ), the solution
is

[X(1)=[Xq(t)) +[X: (1)) ©)

with  [Xq(t)) =T (exp{fsdt[a(t) —vAMDIX(0)), |X (1))
= [odt TLexplJ; di(alt) —v)At)}e"|&(ty), whereA(t) is

the operatoR(t) =e"Ge~ ¢ T is the time ordering op-
erator. Equatior{7) gives

a(t)=v + &(M/[C+(holdne FIX()]. (10

Now taking the average of the above, and using @pand
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at previous instants, we géi(t)>=v, so that on an average,
the kink moves with a velocity. For the polymer to cross
the barrier, the kink has to go in the reverse direction, by a
distance equal to the length of the chain. Henggqg
~N/v. As v is proportional ymk, assumingV(R) to be
temperature independent we fiighyss~N/\/T. If one ne-
glects the kink-phonon scattering term in EqQ) [i.e., the

term (yo|dme~"V¢|X(t))], then the diffusion coefficient of
the kink is D= (3kgT/8m¢) Vm/k[(3a;_ay)(3a,—a;)/
ag’a;,%(a;—ap) Jtar{ 2m(a; —ag)/(ao+ay) .

The above analysis of kink dynamics is valid for the
BDW, while for the PRB, one has to include the effect of the
entropy contribution to the free enerl§]. The kink repre-
sents the local distortion of the chain caused by the barrier
potentialV(x). It would exist as a stable object on the chain
provided the barrier height originating from the potential
V(x) is large in comparison witkgT. Further, it is localized
within the widthw of the potential. The entropic effects leads
to an additional contribution to the barrier, of height
~kgT(InN), which is spread over a large length scale, of the
order of N. Hence its effect on the structure of the kink is
negligible. The driving force for kink motion is the free en-
ergy changeAV(<0) per segment, on crossing the barrier.
In comparison, the free energy change per segment, from the
entropy part is only~kgT(In N)/N, which can be neglected
if [AV|>>kgT(InN)/N, a condition which is easily satisfied
for largeN. Thust,,s<~ N/\/T for the PRB too, ifAV<0.

Now we consider the case where the driving fol¥
=0. Then, in double well case, the kink has no preferred
direction to move, and its average velocity=0. One can
find D= (3kgT/4za3)Jm/k. In this case, the kink just ex-
ecutes random walk without any bias and the time required
for the polymer to cross the barrier it oss~N?/D
~N?/T%2 For the PRB, ifAV=0, the conditionAV>
>kgT(InN)/N is not obeyed and hence the entropic effects
have to be included in the description of dynamics. The pres-
ence of the barrieW(x) assures the existence of the kink,
and as the kink is localized, its diffusion coefficient has no
dependence oN. The kink just diffuses under the influence
of the entropic part of the potential. Now using the first pas-
sage approach of Refl5], one finds again that;,ss
~N?/D~N?T%2 Thus, if AV=0, teoss~ N?/D~N?/T?
in general.

One may finally ask: under what conditions does one ex-
pect the kink mechanism to be operative? We have already
given the conditiorw<<NlI, so that the polymer extends from
one side to the other during most of the time that is spent on
crossing. The kink would exist as a coherent entity, only if
thermal fluctuations do not destroy it. This means that the
barrier height originating fromV(x) be much larger than
kgT. It is also to be noted that our analysis implies that as
long as these conditions are satisfied, the kink is always
there, and its motion is the mechanism for the barrier cross-
ing. This is true, even for very long chains which have an
appreciable contribution to the total barrier from the entropy
effect, which may even be greater than the barrier due to
V(x), simply due to the fact that the entropic contribution is
spread over a length of ordis and hence does not affect the

the fact thatty(t) is independent of everything that occurred structure of the kink.
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In Ref.[5] the motion is assumed to be equivalent to thatour crossing time is proportional td (in contrast toN? of
of the center of mass and hence the effective diffusion coefRef. [5]). The t,s<~N behavior discussed here has been
ficient taken to be~1/N. So, to cover a distandg, it needs observed in the experiments by Kasianowitzal. [3], in
atime~N?3. A free energy difference between the two sideswhich single stranded DNA molecules were forced to move
makes the time-N2. In our analysis, the crossing occurs by through a nanopore.
the motion of the kink. The diffusion coefficient of the kink
is N independent and hence our results are different from | am deeply indebted to Professor S. K. Rangarajan, for
those of Ref[5]. In the case where there is no free energythe encouragement that he has given me over the years. |
difference, our crossing time is proportionalNé(in contrast  thank Professor S. Vasudevan and Professor B. Cherayil for
to N3 of Ref.[5]), while if there is a free energy difference, their comments.
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